Quasi-periodic Geometry for Architectural Acoustics

Downloads
The discovery of quasi-periodic atomic order in the crystalline state has uncovered an exciting new class of symmetries that has never been explored before. Because of their non-periodic translational order and self-similar properties, quasi-periodic structures offer unique opportunities for investigating questions related to their acoustical behavior. Their unique long-range non-periodic formations have the ability to diffuse and orchestrate the flow of sound energy in many unique ways; offering intriguing potential for innovating a new wave of optimized sound diffusers. One key limitation with available periodic diffusers is that their repeating logic creates repetitive energy loops, which significantly reduce their ability to uniformly disperse sound energy. Quasi-periodic geometry can mitigate such limitation. By encapsulating an infinite variety of distinct profiles in all directions, quasi-periodic surfaces can eliminate the formation of bundled or looped reflections; considerably enhancing the ability of the diffuser to uniformly disperse sound energy. To investigate this hypothesis, an experimental approach is used to simulate sound reflection patterns of the quasi-periodic surface profiles using a ray tracing method. Both qualitative and quantitative analyses are used to interpret the simulated results. The international Standards (ISO) metrics are used to validate the proposed approach and verify the results. Results show that the diffusion quality of the tested quasi-periodic surface is superior to the diffusion performance of the tested periodic surface.
Abe, Eiji, Yanfa Yan and Stephen J. Pennycook. 2004. Quasicrystals as cluster aggregates. Nat. Mater. 3:759.
AFMG Technologies GmbH, 2011-2018. AFMG Reflex - A new tool for the design and application of diffuser. Ahnert Feistel Media Group. Berlin, Germany. Accessed online at http://reflex.afmg.eu/) on July 10 2018 .
Author, R. 2011. A long-range hierarchical clustering model for constructing perfect quasi-crystalline formations. Philosophical Magazine 91:2728-2738
Author, R. 2012. The global long-range order of quasi-periodic patterns in Islamic architecture. Acta Crystallographica Section A. 68: 235-243.
Author, R. 2013. "Octagon-based quasi-crystalline formations in Islamic architecture”. In Aperiodic Crystals, ed. Siegbert Schmid, Ray L. Withers and Ron Lifshitz, 49-58. Amsterdam: Springer.
Author, R. 2017a. "Simulation of sound diffusion patterns of fractal-based surface profiles”. In ACADIA 2017: DISCIPLINES & DISRUPTION, Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1. Cambridge, MA 2-4 November, 2017, pp. 52-61.
Author, R. 2017b. An ancient rule for constructing dodecagonal quasi-periodic formations. Journal of Physics: Conference Series. Volume 809 (1): http://iopscience.iop.org/article/10.1088/1742-6596/809/1/012028/pdf
Angus, J. A. 1995. Using modulation phase reflection grating to achieve specific diffusion characteristics. In the 99 Audio Engineering Society Convention, pre-print 4117.
Arau-Puchades, H. 2016. "Sound is a wave: A new concept of Huygens acoustics diffuser” In Concert Hall Acoustics. PROCEEDINGS of the 22nd International Congress on Acoustics, Paper ICA2016-32. Buenos Aires – 5 to 9 September, 2016.
Bak, P. 1986. Icosahedral crystals: Where are the atoms?. Phys. Rev. Lett. 56: 861–864.
Boriskina, SV. 2015. Quasicrystals: Making invisible materials. Nat Photonics 9:422–424
Bradley, David, Erik O. Snow, Kimberly A. Riegel, Zachary D. Nasipak, and Andrew S. Terenzi. 2011. Numerical prediction of sound scattering from surfaces with fractal geometry: A preliminary investigation. Proc. Mtgs. Acoust. 12: 015010.
Colleran, C. Nicholas Jr., Samuel J. Colleran and Ryan L. Larkin. 2008. "Pyramidal diffuser” Acoustics First Corporation. United States Design Patent (10) Patent No.:USO0D581090S.
Cox, T. J. 1996. Designing curved diffusers for performance spaces. J. Audio. Eng. Soc. 44: 354-364.
Cox, T. J. and P. D'Antonio. 1997. Fractal sound diffusers. Proc. of the 103rd Convention of the Audio Eng. Soc. 1- 12.
Cox, T. J. and Y. Lam. 1993. Evaluation of methods for predicting the scattering from simple rigid panels. Applied Acoustics. 40: 123-140.
Cox, Trevor J. and P. D'Antonio. 2004. Acoustic Absorbers and Diffusers: Theory, Design and Application. 1st ed. London and New York: Taylor & Francis.
Cox, T. J., B. I. L. Dalenback, P. D'Antonio, J. J. Embrechts, J.Y.Jeon, E. Mommertz and M. Vorl ̈aner. 2006. A tutorial on scattering and diffusion coefficients for room acoustic surfaces. Acta Acustica united with Acustica 92(1):1-15.
Cox, Trevor J. and P. D'Antonio. 2009. Acoustic Absorbers and Diffusers: Theory, Design and Application. 2nd ed. London and New York: Taylor & Francis.
D'Antonio, P. and J. H. Konnert. 1992. The QRD diffractal: A new one- or two-dimensional fractal sound diffusor. J. Audio Eng. Soc. 40: 117-129.
D'Antonio, P. and Cox Trevor J .2004. Embodiments of aperiodic tiling of a single asymmetric diffusive base shape. US patent 6772859.
De Bruijn, N. G. 1981a. Algebraic theory of Penrose's non-periodic tilings of the plane I. Indag. Math. 43:39–52.
De Bruijn, N. G. 1981b. Algebraic theory of Penrose's non-periodic tilings of the Plane II. Indag. Math. 43:53–66.
De Bruijn, N. G. 1981c. Sequences of zeros and ones generated by special production Rules. Indag. Math. 43:27-37.
De Greve, B. 2006. Reflections and Refractions in Ray Tracing. published online at: https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf.
Dong J.W., M.L. Chang, X.Q. Huang, Z.H. Hang, Z.C. Zhong, W.J. Chen and S.V. Boriskina. 2015. Conical dispersion and effective zero refractive index in photonic quasicrystals. Phys. Rev. Lett. 114(16): 163901.
Dubois, Jean-Marie. 2012. Properties- and applications of quasicrystals and complex metallic alloys. Chem. Soc. Rev. 41: 6760–6777.
Elorza, D. O.
Room acoustics modeling using the ray-tracing method: implementation and evaluation. Licentiate Thesis: University of Turku.
Embrechts, J., D. Archambeau, and G. B. Stan. 2001. Determination of the scattering coefficient of random rough diffusing surfaces for room acoustics applications. Acta Acustica united with Acustica 87: 482-494.
Everest, F. and K. Pohlmann. 2009. Master Handbook of Acoustics. 5th ed. New York: McGraw Hill.
Farner, J. 2014. Acoustic diffusion: Simulation and Investigation of 2D Diffusers using the Boundary Element Method. BE (Hons) thesis, University of Tasmania: Hobart.
Fay, Michael W. 2013. Acoustics 101 for architects.The Journal of the Acoustical Society of America 134: 4005.
Funkhouser T., Tsingos N. and Jot, Jean-Marc. 2003. "Survey of Methods for Modeling Sound Propagation in Interactive Virtual Environment Systems. Presence and Teleoperation. Accesses online http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.5567&rep=rep1&type=pdf
Funkhouser, T.,Tsingos T., Carlbom I., Elko G., Sondhi, M. and West, J. 2002. Modeling sound reflection and diffraction in architectural environments with beam tracing. Forum Acusticum, THE 3rd EAA EUROPEAN CONGRESS ON ACOUSTICS. Seville, Spain: 8.
Henham, W, D. Holloway and L. Panton. 2016. Broadband acoustic scattering with modern aesthetics from random 3D terrain surfaces generated using the Fourier Synthesis algorithm. In Proceedings of Acoustics 2016: The Second Australasian Acoustical Societies Conference, Brisbane, Australia: 1-10.
Hodgson M. 1996. When is diffuse-field theory applicable?. Appl. Acoust. 49(3): 197-207.
Hughes, R.J., J.A. Angus, T.J. Cox, O. Umnova, G.A. Gehring, M. Pogson, and D. M. Whittaker. 2010. Volumetric diffusers: pseudorandom cylinder arrays on a periodic lattice. J Acoust Soc Am.128(5):2847-56.
Ishii, Y. and T. Fujiwara. 2008. "Electronic Structures and Stability of Quasicrystals.” In Quasicrystals, edited by T. Fujiwara and Y. Ishii, 171- 203. Amsterdam: Elsevier.
Jazbec, Simon. 2009. "The Properties and Applications of Quasicrystals.” In Seminar II, university of Ljubljana, Ljubljana. http://mafija.fmf.uni-lj.si/seminar/files/2009_2010/Quasicrystals.pdf
Kleiner M. and Tichy J. 2014. Acoustics of Small Rooms. London and New York: Taylor & Francis CRC Press.
Lam, Y. W. 1999, A boundary integral formulation for the prediction of acoustic scattering from periodic structures. J. Acoust. Soc. Am. 105(2): 762-769.
Lee, H. and T. Sakuma. 2015. Numerical characterization of acoustic scattering coefficients of one-dimensional periodic surfaces. Applied Acoustics 88: 129-136.
Levine, D. and P. Steinhardt. 1984. Quasicrystals: a new class of ordered structures. Phys. Rev. Lett. 53: 2477.
Levine, D. and P. Steinhardt. 1986. Quasicrystals. 1. Definition and structure. Phys. Rev. B 34: 596-616.
Lord, E.A., S. Ranganathan and U.D. Kulkarni. 2000. Tilings, coverings, clusters and quasicrystals. Curr. Sci. 78 (1): 64.
Lu, P. and P. Steinhardt. 2007. Decagonal and quasi-crystalline tilings in medieval islamic architecture. Science 315:11061110.
MacIá, Enrique. 2006. The role of aperiodic order in science and technology. Reports on Progress in Physics 69(2): 397.
Madison, Alexey E. 2015a Atomic structure of icosahedral quasicrystals: stacking multiple quasi-unit cells. RSC Adv. 5: 79279-79297.
Madison, Alexey E. 2015b. Substitution rules for icosahedral quasicrystals. RSC Adv. 5: 5745-5753.
Makovicky, E. 1992. "800-Year-Old Pentagonal Tiling from Maragha, Iran, and the New Varieties of a Periodic Tiling it Inspired.” In Fivefold Symmetry, ed. I. Hargittai, 67–86. Singapore: World Scientific Publishing Co Pte Ltd.
Makovicky, E. and N. Makovicky. 2011. The first find of dodecagonal quasiperiodic tiling in historical islamic architecture. J. Appl. Cryst. 44: 569–573.
Makovicky, E., F. Rull P´erez and P. Fenoll Hach-Al´ı. 1998. Decagonal patterns in the islamic ornamental art of spain and morocco. Bolet´ın Sociedad EspaËœnola Mineralog´ıa. 21:107-127.
Martinsons, M., M. Sandbrink and M. Schmiedeberg. 2014. Colloidal trajectories in two-dimensional light-induced. quasicrystals with 14-fold symmetry due to phasonic drifts. Acta Physica Polonica A 126: 568
Mikhael, J., M. Schmiedeberg, S. Rausch, J. Roth, H. Stark and C. Bechinger. 2010. Proliferation of anomalous symmetries in colloidal monolayers subjected to quasiperiodic light fields. Proc Natl Acad Sci USA 107:7214
Ning, J. F. and G.P. Zhao. 2017. A fractal study of sound propagation characteristics in roughened porous materials. Wave Motion 68: 190-201.
Penrose, R. 1974. The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 10: 266–271.
Qian, Z. W. 2001. Wave scattering on a fractal surface. J. Acoust. Soc. Am. 107: 260-262.
Rigby, J. 2005. A turkish interlacing pattern and the golden ratio. Math. School. 34: 16-24.
Rindel, J. H. 2000. The use of computer modelling in room acoustics. Journal of Vibro engineering 3(4): 219-224.
Roichman, Y. and D. G. Grier .2005. Holographic assembly of quasicrystalline photonic heterostructures. Optics Express 13: 5434–5439
Saltzman, P. W. 2008. "Quasi-periodicity in Islamic ornamental design”. In Nexus VII: Architecture and Mathematics Conference Series, ed. Kim Williams. 153–168. Torino: Kim Williams Books.
Schmiedeberg, M., C.V. Achim, J. Hielscher, S. C. Kapfer and H. Löwen. 2017. Dislocation-free growth of quasicrystals from two seeds due to additional phasonic degrees of freedom. physical Review E 96: 012602.
Schmiedeberg, M. and H. Stark. 2012. Comparing light-induced colloidal quasicrystals with different rotational symmetries. J Phys Condens Matter 24: 284101.
Schroeder, M. R. 1975. Diffuse sound reflection by maximum- length sequences. The Journal of the Acoustical Society of America 57(1):149–150.
Shechtman, D., I. Blech, D. Gratias and J.W. Cahn. 1984. Metallic phase with long range orientational order and no translation symmetry. Phys. Rev. Lett. 53(20): 951-1954.
Socolar, J., P. Steinhardt and D. Levine. 1985. Quasicrystals with arbitrary orientational symmetry. Phys. Rev. B 32: 5547–5550.
Steurer, W. and D. S. Widmer. 2007. Photonic and phononic quasicrystals. J Phys D: Appl Phys 40:R229–R247.
Tenenbaum, R., S. Thiago, T. Camilo, J. Torres and S. Gerges. 2007. Hybrid method for numerical simulation of room acoustics with auralization: part 1 – theoretical and numerical aspects. J. Braz. Soc. Mech. Sci. & Eng. 29(2): 211-221.
Yamamoto, Akiji and Hiroyuki Takakura. 2008. Recent development of quasicrystallography. In Quasicrystals, ed. by T. Fujiwara and Y. Ishii, 11-47. Amsterdam: Elsevier.
Copyright (c) 2018 Author

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal which is under a Attribution-NonCommercial-ShareAlike 4.0 International license (CC BY-NC-SA 4.0).
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).